

Voith Turbo München

Deep Dive: Getriebegehäuselinie – optimiertes additiv gefertigtes Werkzeug

München | 2024-03-06 | Vincent Ross I external

Getriebegehäuselinie – additiv gefertigtes Werkzeug Agenda

- → Hintergrund, Timeline & Vorgehen
- → Anforderungen
- → Werkzeugkonzeption
- → Ergebnis
- → Nutzen, Vorteile & Fazit

Getriebegehäuselinie – additiv gefertigtes Werkzeug **Timeline**

2019

Herausforderungen der Gehäusefertigung

- Hohe Reparaturkosten f

 ür Werkzeugwechsler bei alten Maschinen
- Große Bearbeitungsdurchmesser / enge Toleranzen
- Belastung des Werkzeugwechslers / Kippmoment
- Belastung der Magazinkette /Werkzeuggewicht
- · Werkzeug-Handhabung
 - → Werkzeug in Leichtbauweise erforderlich

2021

Erste Tests

 Konzeption eines geeigneten Werkzeugs für die Fertigung der DIWA.6-Gehäuse

Kennenlernen bei EMO 2019 (Hannover)

Messeauftritt Kennametal und Vorstellung einer Gehäusebearbeitung durch ihre individuelle Werkzeuglösung

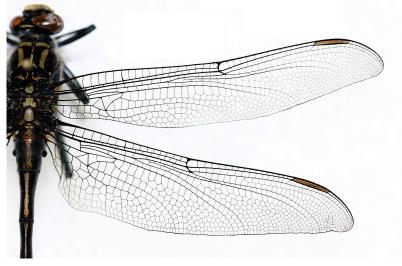
Einsatz im Serienbetrieb

- Erwartete Taktzeitreduzierung bestätigt
- Werkzeug läuft seitdem im Serienbetrieb

2022

2019

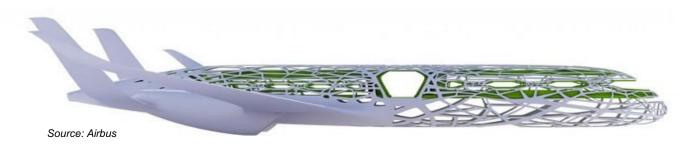
Getriebegehäuselinie – additiv gefertigtes Werkzeug Bionische Adaption & Vorbilder aus anderen Industrien


Bionische Strukturen dienen als Vorlage für besonders leichte & stabile Strukturen

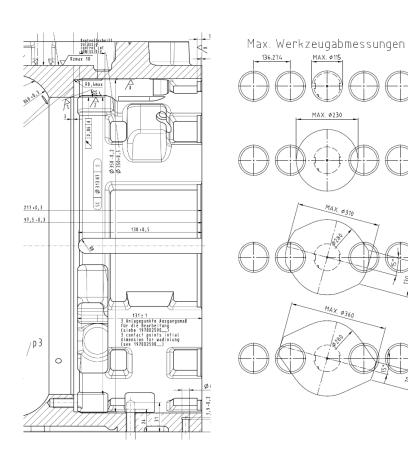
Bei Libellen:

Beschleunigung: bis zu 30 x g

Geschwindigkeit: bis zu 50 km/h

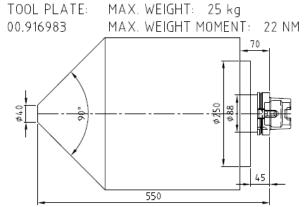

Lokal optimierte Steifigkeit erhöht die maximale Gleitgeschwindigkeit um 25 %

Source: BBC


Zum Transfer in die technische Auslegung werden Simulationsmodelle benötigt, die eine strukturelle Analyse technischer Problemstellungen zulassen.

→ Beispiel Luftfahrt

Optimiertes additiv gefertigtes Werkzeug Anforderungen


Randbedingungen:

- Ausschließliche Betrachtung des Schlichtens
- Durchmesserschneiden alle nacheinander im Eingriff
 - → Keine gegenseitige Beeinflussung
 - → Möglichkeit für jeden Durchmesser eigene Schnittwerte festzulegen
- Obergrenze für Schnittgeschwindigkeit 1000 m/min:

→ @ Ø313 ~
$$\eta_{max}$$
= 1016 min⁻¹

→ @ Ø342 ~
$$\eta_{max}$$
 = 930 min⁻¹

→ @ Ø350 ~
$$\eta_{max}$$
 = 909 min⁻¹

Anforderungen:

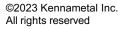
- Taktzeit min. ~ 1 min.
 gleich wie heute:
- Ziel für die Masse: 10 kg (ausgeglichene Belastung der Kette)
- Ziel für das Kippmoment: 12–14 Nm (Funktion & Belastung Werkzeugwechsler)

Getriebegehäuselinie – additiv gefertigtes Werkzeug Werkzeugkonzeption

Simulationsaufbau mit Volumenmodell

Statische und dynamische FEA-Validierung

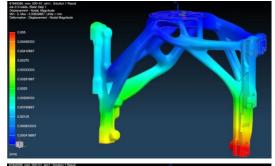
Erstes berechnetes



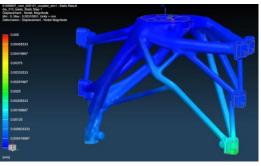
Finales Modell

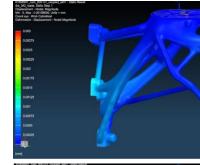
Modell

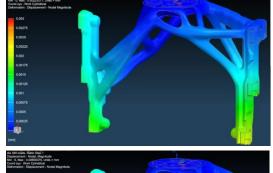
Optimierung des Modells

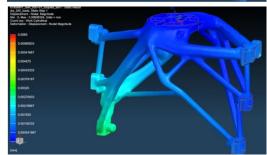

Gedrucktes Werkzeug

Getriebegehäuselinie – additiv gefertigtes Werkzeug

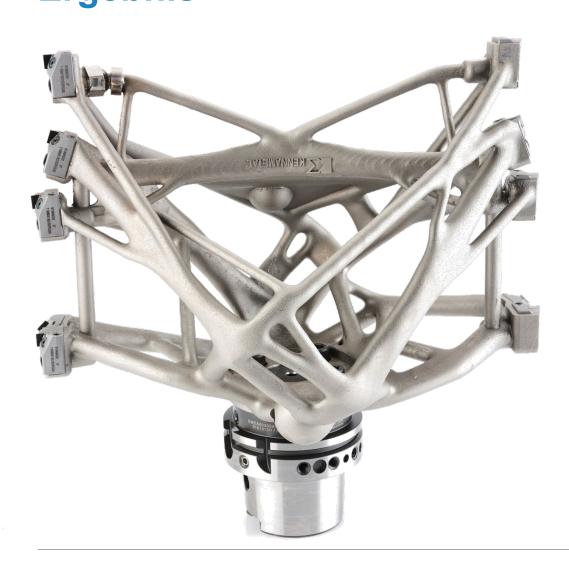



Antriebsseite Evolution


Revision 3



Ø350


Ø313

Ø342

Prototyp Version	R 3	R 11a
Gesamtgewicht der Baugruppe (kg)	9,71	10,05
Lastfall 1: Ø 313		
max. Verformung (mm)	0,0063	0,0031
max. Belastung Stahlkörper (Mpa)	4,63	3,07
Lastfall 1: Ø 342		
max. Verformung (mm)	0,0022	0,002
max. Belastung (Mpa)	2,89	2,5
Lastfall 1: Ø 350 + Fasen		
max. Verformung (mm)	0,0066	0,0064
max. Belastung (Mpa)	26,5	15,1
Zusätzliche Informationen		
COM von Messlinien (mm)	131,95	117,1
Drehmoment (Nm)	11,76	10,83
1. Eigenfrequenz (hz)	256	347

Getriebegehäuselinie – additiv gefertigtes Werkzeug Ergebnis

Daten

• Durchmesser: z = 2

Fasen: z = 1

Masse: < 12 kg

• Kippmoment: 11,8 Nm

Verwendung von RIQ-Feinbohrkassetten

- Weniger Masse als herkömmliche Feinbohrkassetten
- Weniger Unterbau und damit
 Masse notwendig

Ultra Lightweight

3D Printed Cutting Tool Using

KENionic™ Technology

Getriebegehäuselinie – additiv gefertigtes Werkzeug Werkzeugevolution

Getriebegehäuselinie: additiv gefertigtes Werkzeug Nutzen und Vorteile

Produktivitätssteigerung

Reduzierung der Bearbeitungszeit und des Gewicht- und Kippmoment um 50%.

Best Practise

Weltweit erstes gedrucktes 3D Werkzeug in dieser Größe in einer Serienproduktion.

Rewards

Erwerb unterschiedlicher Awards, unter anderem den R&D100 Award

Fazit

Grundhalter ca. doppelt so teurer. Jedoch für Sonderanwendung definitiv wirtschaftlich.

Durch Eigenschaften der additiven Werkzeuge auch Effizienzsteigerung möglich.

Konzepte umsetzbar, die durch konventionell gefertigte Werkzeuge nicht möglich sind.

Vielen Dank! Thank you!